Elements
Elements in a finitely generated abelian group are of type FinGenAbGroupElem and are always given as a linear combination of the generators. Internally this representation is normalised to have a unique representative.
Creation
In addition to the standard function id, zero and one that can be used to create the neutral element, we also support more targeted creation:
gens Method
gens(G::FinGenAbGroup) -> Vector{FinGenAbGroupElem}The sequence of generators of
FinGenAbGroup Method
(A::FinGenAbGroup)(x::Vector{ZZRingElem}) -> FinGenAbGroupElemGiven an array x of elements of type ZZRingElem of the same length as ngens(x.
FinGenAbGroup Method
(A::FinGenAbGroup)(x::ZZMatrix) -> FinGenAbGroupElemGiven a matrix over the integers with either ngens(A) columns or ngens(A) rows and x.
getindex Method
getindex(A::FinGenAbGroup, i::Int) -> FinGenAbGroupElemReturns the element of
rand Method
rand(G::FinGenAbGroup) -> FinGenAbGroupElemReturns an element of
rand Method
rand(G::FinGenAbGroup, B::ZZRingElem) -> FinGenAbGroupElemFor a (potentially infinite) abelian group
Access
getindex Method
getindex(x::FinGenAbGroupElem, v::AbstractVector{Int}) -> Vector{ZZRingElem}Returns the
Note
This function is inefficient since the elements are internally stored using ZZMatrix but this function outputs a vector.
getindex Method
getindex(x::FinGenAbGroupElem, i::Int) -> ZZRingElemReturns the
Predicates
We have the standard predicates iszero, isone and is_identity to test an element for being trivial.
Invariants
order Method
order(A::FinGenAbGroupElem) -> ZZRingElemReturns the order of
Iterator
One can iterate over the elements of a finite abelian group.
julia> G = abelian_group(ZZRingElem[1 2; 3 4])
Finitely generated abelian group
with 2 generators and 2 relations and relation matrix
[1 2]
[3 4]
julia> for g in G
println(g)
end
Abelian group element [0, 0]
Abelian group element [0, 1]