Basics
Creation of algebras
See the corresponding sections on structure constant algebras, group algebras and quaternion algebras.
zero_algebra Method
zero_algebra([T, ] K::Field) -> AbstractAssociativeAlgebraReturn the zero ring as an algebra over the field
The optional first argument determines the type of the algebra, and can be StructureConstantAlgebra (default) or MatrixAlgebra.
Examples
julia> A = zero_algebra(QQ)
Structure constant algebra of dimension 0 over QQBasic properties
base_ring Method
base_ring(A::AbstractAssociativeAlgebra) -> FieldGiven a
basis Method
basis(A::AbstractAssociativeAlgebra) -> VectorGiven a coordinates to get the the coordinates of an element with respect to the bases.
Predicates
is_zero Method
is_zero(A::AbstractAssociativeAlgebra) -> BoolReturn whether
is_commutative Method
is_commutative(A::AbstractAssociativeAlgebra) -> BoolReturn whether
Examples
julia> A = matrix_algebra(QQ, 2);
julia> is_commutative(A)
falseis_central Method
is_central(A::AbstractAssociativeAlgebra)Return whether the
Creation of elements
Elements of algebras can be constructed by arithmetic with basis elements, generators or by providing coordinates.
julia> Q = quaternion_algebra(QQ, -1, -1)
Quaternion algebra
over rational field
defined by i^2 = -1, j^2 = -1, ij = -ji
julia> B = basis(Q);
julia> x = B[1] + B[2] + 1//3 * B[4]
1 + i + 1//3*k
julia> Q([1, 1, 0, 1//3])
1 + i + 1//3*kGenerators
gens Method
gens(A::AbstractAssociativeAlgebra; thorough_search::Bool = false) -> VectorGiven a basis(A), which generates
If thorough_search is true, the number of returned generators is possibly smaller. This will in general increase the runtime. It is not guaranteed that the number of generators is minimal in any case.
The gens_with_data function computes additional data for expressing a basis as words in the generators.
Examples
julia> A = matrix_algebra(QQ, 3);
julia> gens(A; thorough_search = true)
5-element Vector{MatAlgebraElem{QQFieldElem, QQMatrix}}:
[1 0 0; 0 0 0; 0 0 0]
[0 0 0; 1 0 0; 0 0 0]
[0 0 0; 0 0 0; 1 0 0]
[0 1 0; 0 0 0; 0 0 0]
[0 0 1; 0 0 0; 0 0 0]gens_with_data Method
gens_with_data(A::AbstractAssociativeAlgebra; thorough_search::Bool = false)
-> Vector, Vector, VectorGiven a
a subset
of basis(A), which generatesas an algebra over , a (new) basis
and a vector w::Vector{Tuple{Int, Int}}, such thatB[i] = prod(G[j]^k for (j, k) in w[i].
If thorough_search is true, the number of returned generators is possibly smaller. This will in general increase the runtime. It is not guaranteed that the number of generators is minimal in any case.
Examples
julia> A = matrix_algebra(QQ, 3);
julia> G, B, w = gens_with_data(A; thorough_search = true);
julia> B[1] == prod(G[i]^j for (i, j) in w[1])
trueCenter
center Method
center(A::AbstractAssociativeAlgebra)
-> StructureConstantAlgebra, MapReturns the center
Examples
julia> A = matrix_algebra(QQ, 2);
julia> C, CtoA = center(A);
julia> C
Structure constant algebra of dimension 1 over QQdimension_of_center Method
dimension_of_center(A::AbstractAssociativeAlgebra) -> IntGiven a
Examples
julia> A = matrix_algebra(QQ, 2);
julia> dimension_of_center(A)
1dimension_over_center Method
dimension_over_center(A::AbstractAssociativeAlgebra) -> IntGiven a simple
Examples
julia> A = matrix_algebra(QQ, 2);
julia> dimension_of_center(A)
1