Complex embedding
We describe functionality for complex embeddings of arbitrary number fields. Note that a complex embedding of a number field
Construction of complex embeddings
complex_embeddings Method
complex_embeddings(K::NumField; conjugates::Bool = true) -> Vector{NumFieldEmb}Return the complex embeddings of conjugates is false, only one imaginary embedding per conjugated pairs is returned.
Examples
julia> K, a = quadratic_field(-3);
julia> complex_embeddings(K)
2-element Vector{AbsSimpleNumFieldEmbedding}:
Imaginary embedding with 0.00 + 1.73 * i of K
Imaginary embedding with 0.00 - 1.73 * i of K
julia> complex_embeddings(K, conjugates = false)
1-element Vector{AbsSimpleNumFieldEmbedding}:
Imaginary embedding with 0.00 + 1.73 * i of Kreal_embeddings Method
real_embeddings(K::NumField) -> Vector{NumFieldEmb}Return the real embeddings of
Examples
julia> K, a = quadratic_field(3);
julia> real_embeddings(K)
2-element Vector{AbsSimpleNumFieldEmbedding}:
Real embedding with -1.73 of K
Real embedding with 1.73 of KProperties
number_field Method
number_field(f::NumFieldEmb) -> NumFieldReturn the corresponding number field of the embedding
Examples
julia> K, a = quadratic_field(-3); e = complex_embeddings(K)[1];
julia> number_field(e)
Imaginary quadratic field defined by x^2 + 3is_real Method
is_real(f::NumFieldEmb) -> BoolReturn true if the embedding is real.
Examples
julia> K, a = quadratic_field(3); e = complex_embeddings(K)[1];
julia> is_real(e)
trueis_imaginary Method
is_imaginary(f::NumFieldEmb) -> BoolReturns true if the embedding is imaginary, that is, not real.
Examples
julia> K, a = quadratic_field(-3); e = complex_embeddings(K)[1];
julia> is_imaginary(e)
trueConjugated embedding
conj Method
conj(f::NumFieldEmb) -> NumFieldEmbReturns the conjugate embedding of f.
Examples
julia> K, a = quadratic_field(-3); e = complex_embeddings(K);
julia> conj(e[1]) == e[2]
trueEvaluating elements at complex embeddings
Given an embedding
(f::NumFieldEmb)(x::NumFieldElem, prec::Int = 32) -> AcbFieldElemNote that the return type will be a complex ball of type
AcbFieldElem. The radiusrof the ball is guaranteed to satisfyr < 2^(-prec).If the embedding is real, then the value
cwill satisfyis_real(c) == true.
For convenience, we also provide the following function to quickly create a corresponding anonymous function:
evaluation_function Method
evaluation_function(e::NumFieldEmb, prec::Int) -> FunctionReturn the anonymous function x -> e(x, prec).
Examples
julia> K, a = quadratic_field(-3);
julia> e = complex_embeddings(K)[1];
julia> fn = evaluation_function(e, 64);
julia> fn(a)
[+/- 3.99e-77] + [1.73205080756887729353 +/- 5.41e-21]*imLogarithmic embedding
Given an object e representing an embedding log(abs(e)).
julia> K, a = quadratic_field(2);
julia> e = complex_embedding(K, 1.41)
Real embedding
of real quadratic field defined by x^2 - 2
corresponding to root 1.41
julia> log(abs(e))(a, 128)
[0.346573590279972654708616060729088284037750067180127627 +/- 4.62e-55]
julia> log(abs(e(a)))
[0.346573590 +/- 2.99e-10]Restriction
Given a subfield
restrict Method
restrict(f::NumFieldEmb, K::NumField)Given an embedding
Examples
julia> K, a = quadratic_field(3);
julia> L, b = number_field(polynomial(K, [1, 0, 1]), "b");
julia> e = complex_embeddings(L);
julia> restrict(e[1], K)
Real embedding
of real quadratic field defined by x^2 - 3
corresponding to root -1.73restrict Method
restrict(f::NumFieldEmb, g::NumFieldHom)Given an embedding
This is the same as g * f.
Examples
julia> K, a = cyclotomic_field(5, "a");
julia> k, ktoK = Hecke.subfield(K, [a + inv(a)]);
julia> e = complex_embeddings(K);
julia> restrict(e[1], ktoK)
Real embedding
of number field with defining polynomial x^2 + x - 1
over rational field
corresponding to root 0.62Extension
Given a complex embedding
extend Method
extend(e::NumFieldEmb, f::NumFieldHom)Given an embedding
Example
julia> K, a = cyclotomic_field(5, "a");
julia> k, ktoK = Hecke.subfield(K, [a + inv(a)]);
julia> e = complex_embeddings(k)[1];
julia> extend(e, ktoK)
2-element Vector{AbsSimpleNumFieldEmbedding}:
Imaginary embedding with -0.81 + 0.59 * i of K
Imaginary embedding with -0.81 - 0.59 * i of KPositivity & Signs
sign Method
sign(x::NumFieldElem, e::NumFieldEmb) -> IntGiven a number field element x and a complex embedding e, return 1, -1 or 0 depending on whether e(x) is positive, negative, or zero.
Examples
julia> K, a = quadratic_field(3);
julia> e = complex_embedding(K, 1.7);
julia> sign(a, e)
1signs Method
signs(a::NumFieldElem, [embs::Vector{NumFieldEmb} = real_embeddings(K)])
-> Dict{NumFieldEmb, Int}Return the signs of a at the real embeddings in embs as a dictionary, which are by default all real embeddings of the number field.
Examples
julia> K, a = quadratic_field(3);
julia> signs(a)
Dict{AbsSimpleNumFieldEmbedding, Int64} with 2 entries:
Real embedding with -1.73 of K => -1
Real embedding with 1.73 of K => 1is_positive Method
is_positive(a::NumFieldElem, e::NumFieldEmb) -> BoolGiven a number field element a and a real embedding e, return whether a is positive at e.
Examples
julia> K, a = quadratic_field(5);
julia> e = complex_embedding(K, 2.1);
julia> is_positive(a, e)
trueis_positive Method
is_positive(a::NumFieldElem, embs::Vector{NumFieldEmb}) -> BoolReturn whether the element embs. All embeddings in embs must be real.
julia> K, a = quadratic_field(5);
julia> e = complex_embedding(K, 2.1);
julia> e(a)
[2.236067977 +/- 5.02e-10]
julia> is_positive(a, [e])
trueis_totally_positive Method
is_totally_positive(a::NumFieldElem) -> BoolReturn whether the element
is_negative Method
is_negative(a::NumFieldElem, e::NumFieldEmb) -> BoolGiven a number field element a and a real embedding e, return whether a is positive at e.
Examples
julia> K, a = quadratic_field(5);
julia> e = complex_embedding(K, 2.1);
julia> is_negative(a, e)
falseis_negative Method
is_negative(a::NumFieldElem, embs::Vector{NumFieldEmb}) -> BoolReturn whether the element embs. All embeddings in embs must be real.
Examples
julia> K, a = quadratic_field(5);
julia> e = complex_embedding(K, -2.1);
julia> e(a)
[-2.236067977 +/- 5.02e-10]
julia> is_negative(a, [e])
trueExample
As mentioned, this functionality works for all types of number fields. Here is an example of an absolute non-simple number field.
julia> Qx, x = QQ["x"];
julia> K, a = number_field([x^2 + 1, x^3 + 2], "a");
julia> emb = complex_embeddings(K)
6-element Vector{AbsNonSimpleNumFieldEmbedding}:
Complex embedding corresponding to [1.00 * i, -1.26] of K
Complex embedding corresponding to [1.00 * i, 0.63 + 1.09 * i] of K
Complex embedding corresponding to [-1.00 * i, 0.63 + 1.09 * i] of K
Complex embedding corresponding to [-1.00 * i, -1.26] of K
Complex embedding corresponding to [-1.00 * i, 0.63 - 1.09 * i] of K
Complex embedding corresponding to [1.00 * i, 0.63 - 1.09 * i] of K
julia> k, b = quadratic_field(-1);
julia> i = hom(k, K, a[1]);
julia> restrict(emb[1], i)
Imaginary embedding
of imaginary quadratic field defined by x^2 + 1
corresponding to root 1.00 * i
julia> restrict(emb[3], i)
Imaginary embedding
of imaginary quadratic field defined by x^2 + 1
corresponding to root -1.00 * i