Fractional ideals
A fractional ideal in the number field
Fractional ideals are represented as an integral ideal and an additional denominator. They are of type AbsSimpleNumFieldOrderFractionalIdeal.
Creation
fractional_ideal Method
fractional_ideal(O::AbsNumFieldOrder, M::ZZMatrix, b::ZZRingElem; M_in_hnf::Bool = false) -> AbsNumFieldOrderFractionalIdealCreates the fractional ideal of M_in_hnf is set, then it is assumed that
fractional_ideal Method
fractional_ideal(O::AbsNumFieldOrder, M::ZZMatrix, b::ZZRingElem; M_in_hnf::Bool = false) -> AbsNumFieldOrderFractionalIdealCreates the fractional ideal of M_in_hnf is set, then it is assumed that
fractional_ideal Method
fractional_ideal(O::AbsNumFieldOrder, M::QQMatrix) -> AbsNumFieldOrderFractionalIdealCreates the fractional ideal of
fractional_ideal Method
fractional_ideal(O::AbsSimpleNumFieldOrder, I::AbsNumFieldOrderIdeal) -> AbsSimpleNumFieldOrderFractionalIdealThe fractional ideal of
fractional_ideal(O::AbsNumFieldOrder, I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrderFractionalIdealTurns the ideal
fractional_ideal Method
fractional_ideal(O::AbsNumFieldOrder, I::AbsNumFieldOrderIdeal, b::ZZRingElem) -> AbsNumFieldOrderFractionalIdealCreates the fractional ideal
fractional_ideal Method
fractional_ideal(O::AbsNumFieldOrder, a::RingElement) -> AbsNumFieldOrderFractionalIdealCreates the principal fractional ideal
fractional_ideal Method
fractional_ideal(O::AbsNumFieldOrder, a::RingElement) -> AbsNumFieldOrderFractionalIdealCreates the principal fractional ideal
inv Method
inv(A::AbsNumFieldOrderIdeal) -> AbsSimpleNumFieldOrderFractionalIdealComputes the inverse of
Arithmetic
All the normal operations are provided as well.
inv Method
inv(A::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderFractionalIdealReturns the fractional ideal
integral_split Method
integral_split(A::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderIdeal, AbsNumFieldOrderIdealComputes the unique coprime integral ideals
numerator Method
numerator(a::RelNumFieldOrderFractionalIdeal) -> RelNumFieldOrderIdealReturns the ideal
denominator Method
denominator(a::RelNumFieldOrderFractionalIdeal) -> ZZRingElemReturns the smallest positive integer
Miscellaneous
order Method
order(K::AbsSimpleNumField, A::ZZMatrix, check::Bool = true) -> AbsSimpleNumFieldOrderReturns the order which has basis matrix check is set, it is checked whether
order(a::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderThe order that was used to define the ideal
order(A::AbstractAssociativeAlgebra{<: NumFieldElem}, M::PMat{<: NumFieldElem, T})
-> AlgAssRelOrdReturns the order of
basis_matrix Method
basis_matrix(I::AbsNumFieldOrderFractionalIdeal) -> FakeFmpqMatReturns the basis matrix of
basis_mat_inv Method
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMatReturn the inverse of the basis matrix of
basis Method
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}Returns the
norm Method
norm(I::AbsNumFieldOrderFractionalIdeal) -> QQFieldElemReturns the norm of
norm(a::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}Returns the norm of
norm(a::RelNumFieldOrderFractionalIdeal{T, S}) -> SReturns the norm of
norm(a::AlgAssAbsOrdIdl, O::AlgAssAbsOrd; copy::Bool = true) -> QQFieldElemReturns the norm of
norm(a::AlgAssRelOrdIdl{S, T, U}, O::AlgAssRelOrd{S, T, U}; copy::Bool = true)
where { S, T, U } -> TReturns the norm of
